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Abstract - Category theory allows information fusion to be de-ac-field on{2 x T, andu be a probability measure defined
fined properly. Key to the definition of information fusion is the on the measurable spa¢@ x T, &, ). Then the triple
notion of the output under fusion being superior in some way (2 x T, &, 1) forms a probability space [6].
to the output of simple classification systems alone. The def- The design of a classification system involves the abil-
inition therefore relies upon the construction of natural trans- ity to detect (or sense) the occurrence of an evefi,iand
formations suitable to the researcher. This paper discusses thgrocess the event into a label of et For example, design
meaning of such constructions. a system that detects airborne objects and classifies them

friendly or unfriendly. To do this a classification system
Keywords: Tracking, data association, estimation, neural nef€lies on several mappings, which are composed, to provide
work, resource allocation. the user an answer (from the event, to the label). S#fice

is ac-field onQ x T, then letE € & be any member of

&. Then a senso, is defined as a mapping frominto a
1 Introduction (raw) data seD. We denote this with the diagram

E——=D
It has been noted by several researchers (e.g., see [1, 2]) that
a definition of information fusion (also referred to as datgo s(e) = d € Dforalle € E. The sensor is de-
fusion) requires the final information generated to be of sfined to produce a specific data type, so the codomain of
perior quality, in some tangible way, than the informatiop, cod(s) = D, whereD is the set describing the data out-
available from the primary sources. The authors developgdt of mappingg_ A processorp, of this system must have
this idea using category theory and optimization probleng®main, dom(p) = D, and maps to a codomain of features,

in [3, 4], but did not go any further to explore the mathf (a refined data set), cod(p) = F. This is denoted by the
ematical nature of tangibly measuring the required supegiragram

ority. We will describe in this paper the theory necessary D_fop

to explain this. The hoped for outcome of such discus- '

sion and examination is for data fusion algorithm develof-urther, a classifiet,, of this system is a mapping such that
ers to consider how they will demonstrate the superiority dom(c) = Fand cod(c) = L, wherd. is a set of labels
the fusion algorithms to the original information sourceghe user of the system finds useful. This is denoted by the
We must at this time restrict our discussion to classificdiagram

tion systems (sensor -processor-classifier systems) which F—S>1,.

sense events and label them according to their inherent al- i L
gorithms. Therefore, we can denote the entire classification system,

which is diagrammed as

s p c

E D F L,

2 Information Fusion as Defined by

Category Theory asA, the classification system over an event-stateshere
A is the composition of mappings

2.1 Probabilistic Construction of the Event- A=copos.
Label Model

Thus, A is anL-valued random variable which maps mem-
Let € be a complex of conditions [5] for a repeatable exdersE € & into the label seL and is diagrammed by
periment, and lef) be a set of outcomes of this experi-
ment withT C R being a bounded interval of time. Inter- E N L.
val T sortsS2 such that we calE C Q x T anevent-state.
An event-state is then comprised of event-state elements, Consider the simple model of a multi-sensor system
e = (w,t) € E, wherew € Q andt € T. Thuse denotes using two sensors in Figure 1. The sBfs for i € {1, 2},
a statew at an instant of time. LetQ x T, be the set of are sets of event-states. The label kgetan be as sim-
all event-states for an event over time inter¥al Let & be ple as the two-class sé¢target, non-targetyr could have
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\Y
Figure 1: Simple Model of a Dual-Sensor System. po

DQHFQLLQ

a more complex structure to it, such as tieesof targets Figure 2: Two Classification Systems with Overlapping
and non-targets, paired with a ranking of measure, for exields of View.
ample [7], in order to define the battlefield more clearly

for the warfighter.  Now the diagram in Figure 1 représaieqory is a subcategorybf . Each classification system
sents a pair of classification systems having two sensqt§mprises a fixed branch af® (ie., a functor or a family

two processors, and two classifiers, but can easily be @f-functors). Equally true is the fact that if we want to
tended to any finite number.  Now consider two Sensoggmnete classification systems, we must test them over the
not necessarily co-located. Hence they may sense differeGie sample space as well. Therefore, we choose the func-
event-state sets. Figure 1 models two sensors with diffgg; categoryLE, with a fixed L and a fixed E, to compete
ing fields of view. Performing fusion along any node Ofe classification systems over. There exists convergence
edge in this graph cou_ld pqssmly_ result in an elevated .le“tﬁleorems (e.g., see [8, 9, 10]) which allow us to treat E as if
of fusion [2]-that of situation refinement or threat refingz werethe sample population, with the caveat that our test

ment, since we are not fusing common information aboutgen is only as good as it is representative of the operational
particular event or events, but we may be fusing situationsycumstances of the real-world population.

There are at least two other possible scenarios that Fig-
ure 1 could depict. The sensors can overlap in their fieﬁi_z Construction of a family of classification
of view, either partially or fully, in which case fusing the
information regarding event-states within the intersection systems

may be useful. Thus, a fusion process may be used 10 {f, suppose we have a parameter ©, which is possibly
crease the reliability and accuracy of the classification sy itidimensional. Then itis common that there is a family,

tem, above that which is possessed by either of the senS{)(ges . € O}, of classifiers so that for eache ©, each
on its own. Letl] represent that event-state set that is Corgymnosition ' '

mon to both sensors, that iB,= E; N E,. Hence, there
are two fundamental challenges regarding fusion. The first ] ]
is how to fuse information from multiple sources regardin§SCribes an event-state model on fifed &', and fixed
common event-states (or target-states, if preferred) for tpfSD, F, andL. The corresponding family
purpose of knowing the event-state (presumably for the pur- A=A

- o ={4p | 0 € 6},
poses of tracking, identifying, and estimating future event-
states). This is commonly referred to as Leviélision (or whereAy = cy opo s, is a family of classification systems.
Level 0 fusion) Object Assessment. The second and muthus, © acts as an indexing set for definidg One can
more challenging problem is to fuse information from mulextend this idea to include other index setandA, so that
tiple sources regarding event-states not common to all séfle composition
sors, for the purpose of knowing the state of a situation (the Co O Ps O Sny,
situation-state), such as an enemy situation or threat assess: € 0.5 ¢ A el isa classifierd
ment. These are the higher Levelsand3, Situation As- ’ AR (0,8:7)
sessment and Impact Assessment. We distinguish between
the two types of fusion scenarios discussed by calling the2a3 Defining Fusion Rules from the Event-
event-state fusionandsituation-state fusionrespectively. Label Model
We will refer to mathematical models of classification sys-
tems, such as the one in Figure 2, as event-label modéthis point we begin to consider categories generated by
so that Figure 2 represents an event-label model of a dtke¢ model’s sets of data. L& = (D,Idp, Idp, o) be the
sensor process. discrete category generated by datal3et We use these
?tegories to define fusion rules of classification systems.

cpopos

The only restriction necessary for the usefulness 5
this model is that a common field of vie®, be used. Con- Definition 1 (Fusion Rule of n Fixed Branches of Fam-
sequently,D; and D, could actually be the same data seities of Classification Systems)Let G,, be a fixed classi-
under the model, while; ands, could be different sen- fication category witm branches. For each=1,... n,
sors. We will refer to a finite number of families of clasiet ©O; € CAT be a small category of data corresponding
sification systems, such as the two in Figure 2, which we theith branch’s source of data to be fused (this could be
wish to explore the fusion of, as a fixed classification cateaw data, features, or labels). Then the product
gory. Foré& considered as a category of sets, and a fixed
label setl, we note thal.?, is the functor category of all m(n) = H o)
such classification systems, so that our fixed classification ’



is a product category. For any particular category ofile with a constraint changes the Event-State model into an
data, @y, the exponential(’)g("), is a category of fusion Event-State Fusion model. Continuing to consider the two
rules, each rule of which maps the products of data obje(f_;@gni”es of classification systems in Figure 2, it is evident
Ob(7(n)) to a data object ifOb(O,), and maps data ar- that a fusion rule can be designed which would apply to ei-
rows inAr(w(n)) to arrows inAr(0y). These fusion rules ther the data sets, the feature sets, or the label sets (though
are functors$k, which make up the objects of the categongpecial care needs to be taken when the actual labels are
The arrows of the functor category are all the natural trangot identical in definition). Given a fusion rufg for the
formations between them. We design&t®g, (O,) to be two data sets as in Figure 2, our model becomes that of Fig-
this functor category of fusion rules. ure 3. A new data set, processor, feature set, and classifier
may become necessary as a result of the fusion rule having
If the O, are categories generated from sensor sourcgsglifferent codomain than the previous systems. The label
(i.e., outputs), then we ca(ﬂ’g(”)l a category of data-fusion set may change also, but for now, consider a two class label

rules and use the symbai] ™. The fusion rule branch Set, that of
would then be diagrammed like this: L =L; = Ly = {Target, Nontarget},

<81,0,80> 7(n)y —— Dy P op_ where the targets and non-targets are well-defined across

’(1) classification systems (i.e., each classification is identifying
whereD, is the receiving category,is the fusion rule, and targets that satisfy the same definition of what a target is).

< s1,...,8, > isthe unique arrow generated by the prod-
uct(n);. We will not diagram any more of these, but
rather note that the diagram can be written more concisely

by

Dy

s1

R p c
< 81,...,8, > 0T O0POCY (2) E T Dy ——>F ——>1,

. S2
If the categories are generated by processor sources, then \

call O (M2 g category of feature-fusion rules and use the D,

symbolsj—'g("’)2. This fusion rule branch is described by

the composition: . . . .
posit Figure 3: Fusion Rule Applied on Data Categories from

< 81,52,...,58n >O<p17p27"'vpn>oroc¢ (3) Two Fixed Branches.

wherer(n); is the product of data categories, the range of Now at this point we may consider, in what way is
the first arrow,(n), is the product of feature categoriesthe process modeled in FiguresBiperior to the original

the range of the second arrow, r is now the fusion rule gocesses shown in Figure 2 when= L; = Ly (we will

this product of feature categories, afadp;, po,...,p, > deal with the casé; # L, later)? One way of comparing

is the unique arrow generated by the original processggrformance in such systems is to compare the processes’
on the productr(n),. Finally, if they have classifiers asreceiver operating characteristics (ROC) curves, which we
sources, then call them label-fusion rules (or, alternativelyjll show in Section 2.5.

decision-fusion rules) and use the symbﬁ@%”)s. This

fusion rule branch is: 2.4 Fusion Rules

< S81y,...,8, >0<P1,...,Ppp >0<C1l,y...,Cp > orgb) 24.1 Object-Fusion
4

wherery is a fusion rule for each parameter (in order tdhere are, of course, multiple descriptions in the literature
generate an appropriate family of classification system#),“types” of fusion. There islata-fusion,feature-fusion,
and< cq,...,c, > is the unigue arrow generated by thend decision-fusion. There is data in-feature out fusion
original classifiers on the produeat(n)s. ( We removed [11] and many more. We would like to codify what should
the parameters from the classifiers and replaced them wigh meant by these expressions by introducing, in its most
a single, possibly vector valued, parameter on the fusibasic form, a vernacular for fusion which is intuitive, yet
rule). has its definition rooted in mathematics. We start by as-

A fusion rule could be a Boolean rule, a filter, an estSuming we have a finite number of objeuts wish to fuse
mator, or an algorithm. Notice that our definition of fusiofiogether. What does the finite set of fusion rules look like?
rule does not include a qualitative component; there is fPW can we describe in an observational way what is go-
necessary condition of “betterness” for a fusion rule. THBY on? Once the definition of fusion is established, we
result of applying a fusion rule to an existing set of fund&:an move on to labeling types of fusion under certain model
mental branches could result in output considerably wordgumptions.
than existed previously. This does not affect the definitiopefiniton 2  (Object-Fusion ~ Category). Let
First we define fusion rules as the key component of t&?{ | i € {1,...,m}} be a finite sequence of non-empty
fusion process. Next, we pare down the category to a Stegories (possibly discrete). Then
category which does include a qualitative component, with m
one suggested way of accomplishing this. We now desire H 0,
to show how defining a fusor (see Definition 4) as a fusion e




defines a product category. Let similar if and only if they operate on the samdield and
m their output is the same well-defined label set.
=1

Suppose we have a fixed classification category
) : LF, and let A be an object in this category.  Then
for fixedm € N. Then for a fixed categor§, we have that ¢4 1, consisting of k labels, there exists a vector in
FR.,(,,)(0) = o~(m) (n = k? — k)-ROC space described by amvector v,

. here
is a functor category. The functor categdiR . (,,,)(O) W

is called anr(m)-Fusion category relative t©® to denote va = (P2 (A), ..., ok (A), o Pr—1k(A)).

the. functors are .fusm@z O?'ObJeCt.S’ and as necessaryThe proof is self-evident sindeis a sample space. We call
their accompanying arrows into a single object and arr

oW 1 o
in ©. When the relationship of all the); objects can be Mis vector theoperating characteristic vector, and we let

made clear, by simply calling them “objects”, then we call V = {vA | Ae Ob(LE)} (5)
FR () (O) the Object-Fusion category relative ¢ (re- and

ardless of the value of.).
’ : V= (2(V),Ar(V),1d(V),0), (6)
(V) is the power set of/. The category) is

the category of operating characteristic families with un-

n term§ qf'performance. We will need ase(?ond mathemagtermined non-identity arrows (we will determine them
ical definition to narrow the category of fusion rules dowl resently). Now, consider the category

to a subcategory of fusion rules, which can be ordered ac-
cording to their performance in some manner. First we'll C = (2(0b(L¥)), Id(LF), 1d(L¥), o)

consider further delineating the types of fusion rules Wlthlvr\llhose objects are sets of classification systems. Then
the Event-State model.

ODb(C) for each family of classification systems Let

It's important to note in our definition of fusion rules
. . - X where &2
we did not put forward the notion of defining fusionles

2.4.2 Types of Fusion Rules §:C—V (7

be an operating characteristic functor, which maps power

We consider digrapliz, as depicted in Figure 4.E is an sets of classification systems to the set of operating charac-
event in thes—field, &. The setd), andD, are objects of . mcatl Y P Ing
I%I’ISIICS associated with them. Let

a finite collection of categories of data sets, while the se
F, andF5 are objects of a finite collection of categories of E:V—7P (8)
feature sets. The label sdts andL, are the objects of a
finite collection of categories of label sets (and we still r
quire thatl.; = L). The nodes in digrapfe along which

&e a functor wheré® is a poset, thought of as a category
induced by a partial ordek, of its elements. Thegis a
functor taking objects consisting of sets of operating char-
acteristics into a value @P. We do not need to define the

D, p1 F, co L, rule at this point. Le#\g, A; € C, such that
/ 5(k) =
and
E
F(A1) = fa,
52 where the outputs are families of operating characteristics.
D, P2 Fy ce Lo Then the diagram
3 .
_ _ funo —=&(fao) = 1o
Figure 4: Digraph G.
9: J{I\/
fusion rules are generally applied are at the data, feature, v ¢ B
and label categories. Using category theory, we can also fa §(fa) =m

describe that there should theoretically be nodes aathe yherep,, p, € P, commutes for some unique (up to iso-

rowsof digraphG for fusion rules as well, though we havemgrphism)g. This ¢ is an induced partial order oW.

no non-trivial example at this time of a rule or algorithmrhys, for every pair of families of classification systems,
that does this without using the pointwise outputs of the A, < ¢, we have that the rectangle

arrows. So, theoretically, we could possibly have sensor-,
processor-, and classifier-fusion rules (in the sense of these Ao S 3(Ao)

j— 6 > —
being arrows and not speaking of their outputs in this man- - ;_ Tao §(/a0) =0

ner). E :
Y 9 \Y
2.5 Operating Characteristic Functionals '
v v
Definition 3 (Similar Families of Classification Systems). Ay = F(B1) = fa, —=E(far) = m1

Two families of classification systenfs andB are called 9)



commutes when we impose the criteridpg > A; iff (£ o
F)(Ao) > (£ 0 F) (A1), so that the functof o § is a natural 1-
transformation. It is precisely the arrows like which

make such rectangles commute, that belong in the catego
V. ltis also the arrows induced from the partial order 0.
which provide unique maps from one classification family
to another, which will allow us to define the fusion process

k)
°

2.6 Defining Fusors

We are now in a position to define a way in which we car
compete fusion rules. Suppose we have a fixed classil
cation system such as that in Figure 2. Each branch ¢
the system (whether fixed, or associated with a fusion rule
has a ROC manifold that can be associated with the famil
of classification systems, and we now have a viable meat
of competing each branch. If we can only choose amon 0
the two classification systems, take the one whose asso...
ated ROC functional is greater. Therefore, we can also
compete these two classification systems with a new s
tem that fuses the two data categories (or the feature or
bel categories for that matter) by fixing a third family oPYStems.
classification systems, which is based on the fusion rule,

and finding the ROC functional of the event-to-label sygr o . - A if and only if pss > ps. This can be seen in

tem corresponding to the fused data (features). If the fusgll commutativity of the rectangle constructed from Equa-
branch’s ROC functional is greater than either of the origj;,, g

nal two, then the fusion rule is a fusor. Repeating this pro-
cess on a finite number of fusion rules, we discover a finite 3 ¢
collection of fusors with associated ROC functional values. & — Ax — §(An) = fan —= &(fan) = P
Since the subcategory of fusors is partially ordered, the best :
choice for a fusor is the fusor corresponding to the largest :
ROC functional value. Do you want to change your a pri- " :
ori probabilities? Simply adjust in the ROC functional’s ,
data and recalculate the BOTSs for each system. Then cal-é AV 5 F(A )V: f 3 €(fas) =

culate the ROC functional for each corresponding ROC and © © Ae he bs
choose the largest value. The corresponding fusor is thgRa e \we can see that in order for the rectangle to commute,
the_ b_est fusor'go select u_nder your criteria. Ther(_afore, g|v%tz must be a partial order.

a finite collection of fusion rules, we have for fixed ROC
functional data a partial ordering of fusors.

Definition 4 (Fusor over ROC Manifolds). LetT c N I_Definition 5 (Fusion-_RuIe Process).Given aﬁxe(_j classi-
be a finite subset of the natural numbers, withxI = n. fication problem defined by the categdt¥, a fusion-rule

H E
Given{A, };cs a finite collection of similar families of clas- PFOC€SS IS an element Gfb(L™).

sification systems, 07" be the category of fusion rules We didn’t really whittle this down from the category

associated with the product efdata sets. Lef’, be the . cjassification systems, because a fusion rule could be the
ROC functional on the associated ROC manifolds of thge «choose classification system X, which doesn't nec-
families of classification systems, both original and fusegssarily give a performance improvement. The next defi-
_ g2 : : >>T . | PTOVET ST M
wherem = k* — k, with k being the number of classes ofjsion is the one of interest, since it defines the fusion with

interest in the classification problem. Llet, o) be the es- e necessary addition of a qualitative element.
tablished data for the problem. Then given tffigt is the

ROC curve of theth family of classification systems, andDefinition 6 (Fusion Process).Given a fixed classification
fx the ROC curve of the classification familyy, associ- problem defined by the categoiy?, and a natural transfor-

B e
A R W T ol ST SR T, LA SO S N . A S S N

°

s-
)ﬁgure 5: ROC Curves of Two Competing Classification

1Y g

<

We are now in a position to define the fusion processes.

ated with fusion rulér < Ob(Og(")), we say that mation from this category to a category defined by a poset
P = (X, >), let FUS e be the subcategory of classifica-
Ai = Aj <= Fn(fa) > Fn(fa;) (10) tion systems induced by the partial ordering. This category

has as objects precisely those objects.Bfwhich have an
arrow pointing to every fixed branch. We then say a fusion

There is then a category of fusors, which is a subcafd0C€ss is an element 6fb(FUS, ¢ ), and we can call this

gory of Of (") and whose arrows are induced by the roEategory the category of fusion processes.

functional,&, such that given object& and& of this sub-

so that ifAx = A, for all 7 € T, thenfR is called a fusor.

N We have now given a definition of the fusion process
category, then there exists an arré,—~— & if and only which contains everything necessary. As an example, sup-



pose we start with the system

D1L>F1

7 X
E L
N,

DQLFQ

with L ak-class label set. Lelly = agop; 0s; andBy =
by 0p2 052, and consider a functiondl, on the ROC curves

fa and fg whereA andB are defined as families of the

respective classification systems shown @€ing created

under the assumptions and data of the researcher’s cho

Then, given fusion rule&, such as that in Figure 6, ard
and a second fusion system

Dy

V X
<81,852>

E D, x D, P3 dy
s2
Dy

T Fs

D3

Ps

3 Conclusions

Fusion, by definition, requires a qualitative difference be-
tween the final output and the output of the original
sources [1]. The construction of definitions for levéhfor-
mation fusion demonstrates by way of functors and natural
transformations two main points.

First, a classification system should have a characteris-
tic that can be identified as a performance characteristic of
the classification system. It is essentially a functor which
maps the classification system to this characteristic. If the
characteristic is unigue for each classification system, then
one should be able to construct a second functor which
maps the characteristic into a linear order. If the charac-

iEc:eeristic is not unique, we can map the characteristic into a
pa)rtial order.

Second, the selected ordering (linear or partial) in-
duces an ordering on both the characteristics and the clas-
sification systems. The usefulness of the result is depen-
dent upon the size of the equivalence classes that are cre-
ated, particularly for those values in the ordering which are
likely to show up in practice. Examples of partial orders
can be found with receiver operating characteristic (ROC)
manifolds in [4, 3, 10]. Similarly ROC manifolds could be
mapped to a linear ordering (under a ROC manifold domi-
nance scheme), but the resulting equivalence class includes
all ROC manifolds which intersect. It is thus huge and

let fs and f< refer to the corresponding ROC curves tmearly worthless in practice, being desirable but only useful
each of the fusion rule’s systems (as a possible exaifiyour comparison happens to exhibit ROC dominance.
ple of ROC curves of competing fusion rules see Fig-

ure 5). This leads us to say that if we have the inequalities

Fio(fs) 2 Fi(fa), Fi(fe) = Fu(fe), Fiu(fz) = Fi(fa),
and Fy(f<) > Fi(fs), then we say tha®, ¥ are fusors.
Furthermore, supposi;(fs) > Fi(f<). Then we have

that& = €. Thus,S is the fusor a researcher would se-
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